光纤光缆的技术知识45条

来源:重庆申瓯通信  浏览:562次  时间:2017-05-11

1.简述光纤的组成?

答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。
光纤的组成

2.描述光纤线路传输特性的基本参数有哪些?

答:包括损耗、色散、带宽、截止波长、模场直径等。

3. 产生光纤衰减的原因有什么?

答:光纤的衰减是指在一根光纤的两个横截面间的光功率的减少,与波长有关。造成衰减的主要原因是散射、吸收以及由于连接器、接头造成的光损耗。

4.光纤衰减系数是如何定义的?

答:用稳态中一根均匀光纤单位长度上的衰减(dB/km)来定义。

5.插入损耗是什么?

答:是指光传输线路中插入光学部件(如插入连接器或耦合器)所引起的衰减。

6.光纤的带宽与什么有关?

答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。

7.光纤的色散有几种?与什么有关?

答:光纤的色散是指一根光纤内群时延的展宽,包括模色散、材料色散及结构色散。取决于光源、光纤两者的特性。

8.信号在光纤中传播的色散特性怎样描述?

答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。

9.什么是截止波长?

答:是指光纤中只能传导基模的最短波长。对于单模光纤,其截止波长必须短于传导光的波长。

10.光纤的色散对光纤通信系统的性能会产生什么影响?

答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。影响误码率的大小,和传输距离的长短,以及系统速率的大小。

光纤中由光源光谱成分中不同波长的不同群速度所引起的光脉冲展宽的现象。
 光纤的组成

11.什么是背向散射法?

答:背向散射法是一种沿光纤长度上测量衰减的方法。光纤中的光功率绝大部分为前向传播,但有很少部分朝发光器背向散射。在发光器处利用分光器观察背向散射的时间曲线,从一端不仅能测量接入的均匀光纤的长度和衰减,而且能测出局部的不规则性、断点及在接头和连接器引起的光功率损耗。

OTDR正是利用背向散射来测光缆线路的损耗,长度等。

背向散射法
 
12.光时域反射计(OTDR)的测试原理是什么?有何功能?

答:OTDR基于光的背向散射与菲涅耳反射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。其主要指标参数包括:动态范围、灵敏度、分辨率、测量时间和盲区等。
OTDR背向散射


13.OTDR的盲区是指什么?对测试会有何影响?在实际测试中对盲区如何处理?

答:通常将诸如活动连接器、机械接头等特征点产生反射引起的OTDR接收端饱和而带来的一系列“盲点”称为盲区。

光纤中的盲区分为事件盲区和衰减盲区两种:由于介入活动连接器而引起反射峰,从反射峰的起始点到接收器饱和峰值之间的长度距离,被称为事件盲区;光纤中由于介入活动连接器引起反射峰,从反射峰的起始点到可识别其他事件点之间的距离,被称为衰减盲区。

对于OTDR来说,盲区越小越好。盲区会随着脉冲展宽的宽度的增加而增大,增加脉冲宽度虽然增加了测量长度,但也增大了测量盲区,所以,在测试光纤时,对OTDR附件的光纤和相邻事件点的测量要使用窄脉冲,而对光纤远端进行测量时要使用宽脉冲。

14.OTDR能否测量不同类型的光纤?

答:如果使用单模OTDR模块对多模光纤进行测量,或使用一个多模OTDR模块对诸如芯径为62.5mm的单模光纤进行测量,光纤长度的测量结果不会受到影响,但诸如光纤损耗、光接头损耗、回波损耗的结果是不正确的。所以,在测量光纤时,一定要选择与被测光纤相匹配的OTDR进行测量,这样才能得到各项性能指标均正确的结果。

15.常见光测试仪表中的“1310nm”或“1550nm”指的是什么?

答:指的是光信号的波长。光纤通信使用的波长范围处于近红外区,波长在800nm~1700nm之间。常将其分为短波长波段和长波长波段,前者指850nm波长,后者指1310nm和1550nm。

16.在目前商用光纤中,什么波长的光具有最小色散?什么波长的光具有具有最小损耗?

答:1310nm波长的光具有最小色散,1550nm波长的光具有最小损耗。

17.根据光纤纤芯折射率的变化情况,光纤如何分类?

答:可分为阶跃光纤和渐变光纤。阶跃光纤带宽较窄,适用于小容量短距离通信;渐变光纤带宽较宽,适用于中、大容量通信。

18.根据光纤中传输光波模式的不同,光纤如何分类?

答:可分为单模光纤和多模光纤。单模光纤芯径约在1~10μm之间,在给定的工作波长上,只传输单一基模,适于大容量长距离通信系统。多模光纤能传输多个模式的光波,芯径约在50~60μm之间,传输性能比单模光纤差。

在传送复用保护的电流差动保护时,安装在变电站通信机房的光电转换装置与安装在主控室的保护装置之间多用多模光纤。

19.阶跃折射率光纤的数值孔经(NA)有何意义?

答:数值孔经(NA)表示光纤的收光能力, NA越大,光纤收集光线能力越强。

20.什么是单模光纤的双折射?

答:单模光纤中存在两个正交偏振模式,当光纤不完全园柱对称时,两个正交偏振模式并不是简并的,两个正交偏振的模折射率的差的绝对值即为双折射。

21.最常见的光缆结构有几种?

答:有层绞式和骨架式两种。


光缆结构图


22.光缆主要由什么组成?

答:主要由:纤芯、光纤油膏、护套材料、PBT(聚对苯二甲酸丁二醇酯)等材料组成。

23.光缆的铠装是指什么?

答:是指在特殊用途的光缆中(如海底光缆等)所使用的保护元件(通常为钢丝或钢带)。铠装都附在光缆的内护套上。

24.光缆护套用什么材料?

答:光缆护套或护层通常由聚乙烯(PE)和聚氯乙烯(PVC)材料构成,其作用是保护缆芯不受外界影响。

25.列举在电力系统中应用的特殊光缆。

答:主要有三种特殊光缆:

地线复合光缆(OPGW),光纤置于钢包铝绞结构的电力线内。OPGW光缆的应用,起到了地线和通信的双功能,有效地提高了电力杆塔的利用率。

缠绕式光缆(GWWOP),在已有输电线路的地方,将这种光缆缠绕或悬挂在地线上。

自承式光缆(ADSS),有很强的抗张能力,可直接挂在两座电力杆塔之间,其最大跨距可达1000m。

26.OPGW光缆的应用结构有几种?

答:主要有:1)塑管层绞+ 铝管的结构;2)  中心塑管+ 铝管的结构;3)  铝骨架结构;4) 螺旋铝管结构;5) 单层不锈钢管结构( 中心不锈钢管结构、不锈钢管层绞结构);6) 复合不锈钢管结构( 中心不锈钢管结构、不锈钢管层绞结构)。

27.OPGW光缆缆芯外的绞线线材主要由什么组成?

答:以AA线(铝合金线) 和AS线材(铝包钢线)组成。

28.要选择OPGW光缆型号,应具备的技术条件有哪些?

答:1) OPGW光缆的标称抗拉强度(RTS) (kN);2) OPGW光缆的光纤芯数(SM);3) 短路电流(kA);4) 短路时间(s);5) 温度范围(℃)。

29.光缆的弯曲程度是如何限制的?

答:光缆弯曲半径应不小于光缆外径的20倍,施工过程中(非静止状态)不小于光缆外径的30倍。

30.在ADSS光缆工程中,需注意什么?

答:有三个关键技术:光缆机械设计、悬挂点的确定和配套金具的选择与安装。

31.光缆金具主要有哪些?

答:光缆金具是指安装光缆使用的硬件,主要有:耐张线夹,悬垂线夹、防振器等。

32.光纤连接器有两个最基本的性能参数,分别是什么?

答:光纤连接器俗称活接头.对于单纤连接器光性能方面的要求,重点是在介入损耗和回波损耗这两个最基本的性能参数上。

光纤接口图

光纤连接器图

 

33.常用的有几类?

答:按照不同的分类方法,光纤连接器可以分为不同的种类,按传输媒介的不同可分为单模光纤连接器和多模光纤连接器;按结构的不同可分为FC、SC、ST、D4、DIN、Biconic、MU、LC、MT等各种型式;按连接器的插针端面可分为FC、PC(UPC)和APC。常用的光纤连接器:FC/PC型光纤连接器、SC型光纤连接器,LC型光纤连接器。

34.在光纤通信系统中,常见下列物品,请指出其名称。

AFC、FC 型适配器  ST型适配器  SC型适配器 FC/APC、FC/PC型连接器    SC型连接器  ST型连接器 LC型跳线  MU型跳线  单模或多模跳线

35.什么是光纤连接器的介入损耗(或称插入损耗)?

答:是指因连接器的介入而引起传输线路有效功率减小的量值,对于用户来说,该值越小越好。ITU-T规定其值应不大于0.5dB。

36.什么是光纤连接器的回波损耗(或称反射衰减、回损、回程损耗)?

答:是衡量从连接器反射回来并沿输入通道返回的输入功率分量的一个量度,其典型值应不小于25dB。

37.发光二极管和半导体激光器发出的光最突出的差别是什么?

答:发光二极管产生的光是非相干光,频谱宽;激光器产生的光是相干光,频谱很窄。

38.发光二极管(LED)和半导体激光器(LD)的工作特性最明显的不同是什么?

答:LED没有阈值,LD则存在阈值,只有注入电流超过阈值后才会产生激光。

39.单纵模半导体激光器常用的有哪两种?

答:DFB激光器和DBR激光器,二者均为分布反馈激光器,其光反馈是由光腔内的分布反馈布拉格光栅提供的。

40.光接收器件主要有哪两种?

答:主要有光电二极管(PIN管)和雪崩光电二极管(APD)。

41.光纤通信系统的噪声产生的因素有哪些?

答:有由于消光比不合格产生的噪声,光强度随机变化的噪声,时间抖动引起的噪声,接收机的点噪声和热噪声,光纤的模式噪声,色散导致的脉冲展宽产生的噪声,LD的模分配噪声,LD的频率啁啾产生的噪声以及反射产生的噪声。

42.目前用于传输网建设的光纤主要有哪些?其主要特点是什么?

答:主要有三种,即G.652常规单模光纤、G.653色散位移单模光纤和G.655非零色散位移光纤。

G.652单模光纤在C波段1530~1565nm和L波段1565~1625nm的色散较大,一般为17~22psnm•km,系统速率达到2.5Gbit/s以上时,需要进行色散补偿,在10Gbit/s时系统色散补偿成本较大,它是目前传输网中敷设最为普遍的一种光纤。

G.653色散位移光纤在C波段和L波段的色散一般为-1~3.5psnm•km,在1550nm是零色散,系统速率可达到20Gbit/s和40Gbit/s,是单波长超长距离传输的最佳光纤。但是,由于其零色散的特性,在采用DWDM扩容时,会出现非线性效应,导致信号串扰,产生四波混频FWM,因此不适合采用DWDM。

G.655非零色散位移光纤:G.655非零色散位移光纤在C波段的色散为1~6psnm•km,在L波段的色散一般为6~10psnm•km,色散较小,避开了零色散区,既抑制了四波混频FWM,可用于DWDM扩容,也可以开通高速系统。新型的G.655光纤可以使有效面积扩大到一般光纤的1.5~2倍,大有效面积可以降低功率密度,减少光纤的非线性效应。

43.什么是光纤的非线性?

答:是指当入纤光功率超过一定数值后,光纤的折射率将与光功率非线性相关,并产生拉曼散射和布里渊散射,使入射光的频率发生变化。

44.光纤非线性对传输会产生什么影响?

答:非线性效应会造成一些额外损耗和干扰,恶化系统的性能。WDM系统光功率较大并且沿光纤传输很长距离,因此产生非线性失真。非线性失真有受激散射和非线性折射两种。其中受激散射有拉曼散射和布里渊散射。以上两种散射使入射光能量降低,造成损耗。在入纤功率较小时可忽略。

45.什么是PON(无源光网络)?

答:PON是本地用户接入网中的光纤环路光网络,基于无源光器件,如耦合器、分光器